The quercetin paradox.
نویسندگان
چکیده
Free radical scavenging antioxidants, such as quercetin, are chemically converted into oxidation products when they protect against free radicals. The main oxidation product of quercetin, however, displays a high reactivity towards thiols, which can lead to the loss of protein function. The quercetin paradox is that in the process of offering protection, quercetin is converted into a potential toxic product. In the present study, this paradox is evaluated using rat lung epithelial (RLE) cells. It was found that quercetin efficiently protects against H(2)O(2)-induced DNA damage in RLE cells, but this damage is swapped for a reduction in GSH level, an increase in LDH leakage as well as an increase of the cytosolic free calcium concentration. To our knowledge, this is the first study that indicates that the quercetin paradox, i.e. the exchange of damage caused by quercetin and its metabolites, also occurs in living lung cells. Following depletion of GSH in the cells by BSO pre-treatment, this quercetin paradox becomes more pronounced, confirming that the formation of thiol reactive quercetin metabolites is involved in the quercetin paradox. The quercetin paradox in living cells implies that the anti-oxidant directs oxidative damage selectively to thiol arylation. Apparently, the potential toxicity of metabolites formed during the actual antioxidant activity of free radical scavengers should be considered in antioxidant supplementation.
منابع مشابه
Vascular deconjugation of quercetin glucuronide: the flavonoid paradox revealed?
SCOPE The dietary flavonoid quercetin exerts protective cardiovascular effects. Because quercetin is rapidly metabolized into less active or inactive glucuronidated metabolites and the plasma concentrations of free quercetin are very low, a huge amount of scientific data generated along decades with the unconjugated compounds in vitro has been questioned. We aimed to determine whether glucuroni...
متن کاملThe flavonoid paradox: conjugation and deconjugation as key steps for the biological activity of flavonoids.
Flavonoids have been proposed to exert beneficial effects in the prevention of a large number of diseases, including cancer, cardiovascular disease, and neurodegenerative disorders. Paradoxically, despite the most representative flavonoid--quercetin--exerting biologically demonstrable systemic effects, it is not found in plasma after oral administration and its circulating metabolites show weak...
متن کاملQuercetin inhibits Shc- and phosphatidylinositol 3-kinase-mediated c-Jun N-terminal kinase activation by angiotensin II in cultured rat aortic smooth muscle cells.
Angiotensin II (Ang II) induces vascular smooth muscle cell (VSMC) hypertrophy, which results in various cardiovascular diseases. Ang II-induced cellular events have been implicated, in part, in the activation of mitogen-activated protein (MAP) kinases. Although it has been proposed that daily intake of bioflavonoids belonging to polyphenols reduces the incidence of ischemic heart diseases (kno...
متن کاملBertrand’s Paradox Revisited: More Lessons about that Ambiguous Word, Random
The Bertrand paradox question is: “Consider a unit-radius circle for which the length of a side of an inscribed equilateral triangle equals 3 . Determine the probability that the length of a ‘random’ chord of a unit-radius circle has length greater than 3 .” Bertrand derived three different ‘correct’ answers, the correctness depending on interpretation of the word, random. Here we employ geomet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicology and applied pharmacology
دوره 222 1 شماره
صفحات -
تاریخ انتشار 2007